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We present a method for calculation of the potential and related physical quantities experienced by a particle
traversing an aligned periodic complex atomic structure. Classical physics equations and the expansion of
periodic functions as a Fourier series have been used for the calculation. Based on this method, we have
developed the ECHARM program, which calculates one- and two-dimensional averaged physical quantities of
interest along the main axes of any orthorhombic and tetragonal structure. For the case of cubic symmetry, the
calculation holds for any orientation. Complex structures such as zeolites have been worked out to show the
capability of the program.
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I. INTRODUCTION

Interaction of either charged or neutral particles with crys-
tals is an area of science under development because of a
wealth of applications with the particle energy spanning over
several decades. Low- and medium-energy interactions of
charged particles involve plasma etching �1� and plasma sur-
face interaction in nuclear fusion facilities �2�. High-energy
applications involve emission of many types of coherent ra-
diation �3� and particle steering in bent crystals �3–6� via
either channeling or volume reflection �7,8�. Important ex-
amples of interaction of neutral particles in crystals are the
production of electron-positron pairs and birefringence of
high energy gamma quanta �9,10�. More recently interaction
of particles with nanostructures has met the interest of scien-
tists �11�.

For most experiments and applications, especially those
pertaining to radiation emission and particle steering, silicon
has been the base material because of the high perfection and
ease of availability of currently produced monocrystals as
wafers or ingots. Indeed, experiments have been made with
other monocrystalline materials, such as Ge �12� and W �13�,
and also been proposed with new periodic complex atomic
structures �14–16�. The discovery of novel effects is strongly
related to the possibility to produce crystals with proper
characteristics and to simulate their behavior. For the new
materials, it arises the need for a methodology to calculate
the physical quantities of interest.

As Lindhard showed �17�, the motion of relativistic
charged particles under channeling condition is well approxi-
mated with classical physics equations and, as a conse-
quence, also the potential and its related quantities. A tradi-
tional approach for its calculation relies on the analytical
representation of the screened Coulomb potential
�16,18–20�, for which its average is made for planar and
axial cases by taking into consideration the potential of the
atoms lying in neighboring planes or axes.

Another possible approach is based on the expansion in
Fourier series of the physical quantities of interest. Although
this approach has been widely used in many research areas,
for the case of channeling it has been developed to date only
for particular monoatomic cubic crystals along major orien-

tation �15,21–23�. The method based on Fourier expansion is
more flexible than the former, inasmuch as it can be applied
to any realistic model of the atomic potential. Moreover, it
allows one to determine averaged one- and two-dimensional
physical quantities for any axis and plane of the crystal.

In this paper we propose a complete treatment and gener-
alization of the method based on the expansion of the electric
potential as a Fourier series, which allows one to calculate
the physical quantities of interest even in complex atomic
structures. The method will be shown to determine the physi-
cal quantities with good approximations and with reasonable
calculation time. Moreover, x-ray measurements of electron
density can be directly used for more precise calculations of
the potential. Finally the method of calculation has been
implemented in a simulation code �the ECHARM program� for
fast calculation even for a nonexpert user.

II. POTENTIAL AND RELATED QUANTITIES
IN A PERIODIC STRUCTURE

Although the method of the Fourier expansion of the po-
tential has already been used for some specific applications
�15,21–23�, its full detail has not been shown. In the follow-
ing paragraphs we will highlight its main features and arrive
at the expression for the potential.

A. General background

Three-dimensional periodic atomic structure is deter-
mined by the primitive cell and its basis; through the trans-
lation vectors a1, a2, a3, one can build the whole atomic
structure. Translation vector is defined as

rk = k1a1 + k2a2 + k3a3, �1�

where k= �k1 ,k2 ,k3� is a set of integer numbers. In this
first paragraph we consider for simplicity a perfect mon-
atomic structure without thermal vibrations. Let u�r� be a
scalar function determined in the space and the integral
�Vu�r�dr be convergent over the whole space, then the func-
tion,

U�r� = �
k

�
j=1

N0

u�r − rk − r j� �2�
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can be represented by its Fourier transform, r j being the
coordinates of the jth atom in the primitive cell and N0 the
number of atoms in it,

U�q� = �
V

U�r�eiq·rdr = �
k

�
j=1

N0

u�q�eiq·�rk+rj�, �3�

where integration is made over the whole space V and
where u�q�=�Vu�r�eiq·rdr. Using the � function properties
we obtain

U�q� =
�2��3

�
�
j=1

N0

eiq·rj�
g

u�q���q − g� , �4�

where g are the reciprocal lattice vectors �24�. By performing
the reverse Fourier transform we get

U�r� =
1

�
�

g
u�g�S�g�e−ig·r, �5�

where � is the volume of the primitive cell and S�g�
=� j=1

N0 eig·rj is the structure factor.
The term with g=0 in this sum equals to

1

�
u�g = 0�S�g = 0� =

N0

�
� u�r�dr . �6�

B. Case of an ideal structure

Let us approximate the potential of a complex periodic
atomic structure as a sum of single-atom potential,

��r� � �
k

�
j=1

N0

u�r − rk − r j� , �7�

where u�r� is the potential of an isolated atom. This for-
mula does not consider the delocalization of electrons among
neighboring atoms, though the x-ray experiments show that
approximation is very good �24�. With the aim of investigat-
ing the interaction of relativistic particles with such struc-
tures, there is no need for a more precise description of the
potential. We can rewrite the formula by using the expansion
shown in previous section,

��r� =
1

�
�

g
u�g�S�g�e−ig·r. �8�

By performing the Fourier transform of the Poisson equation
to express u�g�, we obtain,

��r� =
4�eZ

�
�
g�0

S�g�
�1 − F�g��

g2 e−ig·r, �9�

where e is the elementary charge, Z is the atomic number
and F�g� is the atomic form factor. We subtracted the term
with g=0 because the potential is defined except for an ad-
ditive constant.

With the same procedure we can study the case of a poly-
atomic structure as a superposition of N independent mono-
atomic structures. Every structure have the same primitive

cell and the same main period, but, in general, different bases
consisting of all the atoms with identical species.

��r� = �
l=1

N

�l�r� , �10�

where l runs over the N atomic species. As a result, for the
periodic polyatomic structures, it holds

��r� =
4�e

�
�
g�0

1

g2�
l=1

N

ZlS�Zl,g��1 − F�Zl,g��e−ig·r, �11�

where S�l ,g�=� j=1
Nl eig·rj,l, Zl , F�Zl ,g� are the correspond-

ing structure factors, atomic numbers and atomic form fac-
tors; rj,l and Nl are the corresponding coordinates and num-
ber of atoms of the lth species.

Starting from Eq. �11�, with the help of basic electrostatic
equations, one can obtain physical quantities for an ideal
periodic structure, such as the components of the electric
field, the electron and atomic densities, i.e., the number of
atomic centers per unit of volume.

C. Case of an ideal structure averaged over thermal vibration

Thermal vibrations influence the electric characteristics
because of the change in the location of the atoms in the
structure �3,21�. As a consequence, we have to approximate
the potential by averaging over time and spatial fluctuations:
as suggested in the literature �21�, we describe the space
distribution of atom centers in the primitive cell using nor-
malized probability density functions. In principle, the
method allows one to calculate averaged potential for any
arbitrary real complex atomic structures. However, in this
paper we will work out only the case of isotropic indepen-
dent thermal oscillations under the assumption that the am-
plitudes are the same for each atom of a given species. Under
this assumption we obtain the three-dimensional potential
averaged over thermal fluctuations

��r� =
4�e

�
�
g�0

	Y�g�

g2 e−ig·r, �12�

where

	Y�g�
 = �
l=1

N

ZlS�Zl,g��1 − F�Zl,g��e−Alg
2/2, �13�

where Al is the mean square amplitude of the thermal
vibration of the lth species. By the same method we derive
the components of the electric field and of the electron and
atomic densities averaged out over thermal fluctuations,

E�r� =
4�ei

�
�
g�0

g

g2 	Y�g�
e−ig·r, �14�

�e�r� =
1

�
�
l=1

N

ZlNl +
1

�
�

g
�
l=1

N

ZlS�l,g�F�Zl,g�e−Alg
2/2e−ig·r,

�15�
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�a�r� =
1

�
�
l=1

N

Nl +
1

�
�

g
�
l=1

N

S�l,g�e−Alg
2/2e−ig·r. �16�

The left side of the equations are real numbers, meaning
that the imaginary parts of the complex numbers on the right
side are equal to zero.

III. ONE- AND TWO-DIMENSIONAL AVERAGED
POTENTIALS

A. Generalities

For interaction of particles with a single crystal, the one-
and two-dimensional potentials and their related quantities
are widely used �3�. As an example, such approximation can
be employed for the study of the cases in which the particles
travel between the planes �planar channeling� or parallel to
the axes �axial channeling�. Thereby, we will average the
potential achieved in previous section as a one- and two-
dimensional potential. According to the literature �24� we
identify planes �hkl� and axes �hkl� through Miller indexes.

B. Orthorhombic and tetragonal lattices

Although previously obtained Eqs. �12�–�16� can be used
to describe electrical characteristic of any perfect crystallo-
graphic structure, we will focus on the orthorhombic and
tetragonal lattice, because the majority of crystals used for
channeling have this symmetry or higher. Thus, we choose a
Cartesian coordinate system �xyz� with the axes directed
along �100�, �010�, and �001� directions of the crystal. In this
coordinate system, we can represent the vector g in the fol-
lowing form:

g = 2��n1

a1
e1 +

n2

a2
e2 +

n3

a3
e3� , �17�

where n1 , n2 , n3 are integer numbers, a1 , a2 , a3 are
the periods of the lattice, e1 , e2 , e3 are the unit vectors
along axes of the Cartesian coordinate system.

By using this coordinate system we can define the one-
and two-dimensional potentials �also called planar and axial
potential, respectively�, as follows:

�p�x� =
1

Sp
� �

Sp

��x,y,z�dydz �18�

�a�x,y� =
1

L
�

0

L

��x,y,z�dz , �19�

where Sp is the area of the projection of the primitive cell
onto the �100� plane and L=a3 is the period along the z
direction. In the same manner, we can obtain �p�y� , �p�z�,
for the planar case, and �a�x ,z� , �a�y ,z� for the axial case.
It is easy to see that averaging out over one or two dimen-
sions brings some simplifications to Eqs. �12�–�16�. By tak-
ing into account of Eq. �18�, the reciprocal vectors sum runs
only on n3 index for the planar case, and runs only on n2 and
n3 indexes for the axial case. These considerations also affect
the scalar product between reciprocal and direct vectors; for

the �100� plane, in planar case, it holds g=2�n1e1 /a1, g ·r
=2�n1x /a1 and for the �100� axis in axial case g
=2��n1e1 /a1+n2e2 /a2�, g ·r=2�n1x /a1+2�n2y /a2. Chan-
neling in orthorhombic and tetragonal crystals is interesting
mostly along major orientations and for that it will not be
worked our for the others. The other physical quantities
could be either obtained by a similar average or indirectly
through the knowledge of the potential.

C. Cubic lattice

In this section we focus on the calculation of the physical
quantities of interest for any direction in a cubic lattice be-
cause the majority of the crystals used in the experiments
have this lattice. We introduce an orthogonal system, with
axes defined by �k1k2k3�, �l1l2l3� and �m1m2m3� Miller in-
dexes and rewrite Eq. �12� in this coordinate system,

��r�� =
4�e

�
�
g�0

	Y�g�

g2 e−iG��x�,y�,z��, �20�

where G=2� /a, g=G�n1e1+n2e2+n3e3�, a is the side of the
cube and with:

��x�,y�,z�� = �
i=1

3

�nikix�/ks + niliy�/ls + nimiz�/ms� , �21�

where ks=k1
2+k2

2+k3
2, ls=l1

2+ l2
2+ l3

2, ms=m1
2+m2

2+m3
2, and

ni runs from −	 to +	.
We also introduce other integer numbers N1 , N2 , N3,

connected with previous numbers n1 , n2 , n3 by the rela-
tions,

n1k1 + n2k2 + n3k3 = N1, �22�

n1l1 + n2l2 + n3l3 = N2, �23�

n1m1 + n2m2 + n3m3 = N3. �24�

The potential holds

��r�� =
4�e

�
�
g�0

	Y�g�

g2 e−iG�N1x�/ks+N2y�/ls+N3z�/ms�. �25�

For every fixed number N1 , N2 , N3, each individual
plane in the crystal lattice is defined by Eqs. �22�–�24� via
coefficients �k1k2k3�, �l1l2l3�, �m1m2m3� �24�. For each selec-
tion of the above coefficients, by varying the index Ni all
over the set of integer numbers, the whole lying of parallel
planes is achieved.

The case when the integer numbers n1 , n2 , n3 �at fixed
N1 , N2� simultaneously satisfy Eqs. �22� and �23� corre-
sponds to axis along the �m1m2m3� direction, thought the
inverse proposition does not take place.

The averaged potential along the �m1m2m3� axis holds

�a�x�,y�� =
1

L
�

0

L

��x�,y�,z��dz�, �26�

where L is the period of potential variation along this axis.
It is clear that the average is equivalent to selecting the terms
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with N3=0 in the Fourier series. It means that

n1m1 + n2m2 + n3m3 = 0. �27�

By integrating Eq. �25� we obtain the axial potential along
�m1 , m2 , m3� axis.

�a�x�,y�� =
4�e

�
�

n1,n2=−	

+	
	Y�n1,n2,n3�


g2 e−iG�N1x�/ks+N2y�/ls�,

�28�

where n1 , n2 , n3 numbers are the integer solutions of Eq.
�27� and N1 , N2 are defined by Eqs. �22� and �23�.

In a similar manner, one can determine the planar poten-
tial for an arbitrary plane of the cubic lattice,

�p�x�� =
4�e

�
�

N=−	

+	
	Y�n1,n2,n3�


g2 e−iGNksx�, �29�

where ni=Nki.

IV. PROGRAM FOR CALCULATION OF THE
POTENTIAL

Aside from theoretical study in previous section and be-
fore we provide examples of calculation of the potential, we
describe a program we developed, called ECHARM �Electrical
CHARacteristics of Monocrystals� to enable a nonexpert
user for the calculation of the averaged potential of complex
atomic structures. The program is free and available at this
website �25�.

A. Generalities

The ECHARM program is capable of calculating one- and
two-dimensional physical quantities of interest averaged out
over atomic thermal vibrations. The calculation is limited to
the main planes and axes of the orthorhombic and tetragonal
cells and to any axes and planes of the cubic cell. The pro-
gram is written in visual style to aid its usage. Useful section
and detailed information are contained in the program helper.

B. Atomic form factors

As in Sec. II B, we will use the single-atomic potential
approximation to calculate the potential: as a direct conse-
quence, the correctness of the approximation strongly de-
pends on the atomic form factor chosen, which describes the
distribution of the electrons “dressing” the nuclei. In the pro-
gram three types of approximations are available for atomic
form factors, i.e., simple form factor, Molière form factor
and experimentally determined form factor.

In the simple form factor approximation, the electrons are
distributed in the neighborhood of the nuclei according, in
reciprocal space, to the equation

F�g� =
1

1 + g2R2 , �30�

where R=CZ1/3
c �
c is Compton length of electron�. The
constant C is assumed to be 111 in default by the program,
though it is possible to modify it.

The Molière approximation is widely adopted in the lit-
erature to study channeling because it furnishes a result with
comparable accuracy as for analytic calculations �19,20�: the
electron density is described, in reciprocal space, by the
equation,

F�g� = 1 − g2�
j=1

3
aj

bj
2 + g2 , �31�

where a1=0.1, a2=0.55, a3=0.35, bj =Z1/3cj / �121
c�, c1=6,
c2=12, c2=0.3.

The experimental form factor represents a precise ap-
proximation, which takes into account available data from
x-ray measurements, from which one can fit the � j, � j coef-
ficients in the equation,

F�g� = �0 + �
j=1

4

� je
−�jg

2
. �32�

Lastly, the ECHARM program is equipped with a facility to
import x-ray measured electron density.

C. Amplitude of thermal vibrations

The amplitude of thermal vibrations is important at each
temperature, therefore the ECHARM program gives the flex-
ibility to set its value manually, allowing the user to intro-
duce x-ray measurement of the root mean square of thermal
vibration amplitude, or it allows to calculate it from Debye
temperature.

We expect that the energy of thermal vibrations remains
the same for any atomic species �24�, meaning that the root
mean square of the amplitude is inversely proportional to the
atomic mass.

V. EXAMPLES OF CALCULATIONS

A. Simple structures

Nowadays, the crystals that have best performed in chan-
neling experiments were made of silicon. The calculation of
the potential in these crystals was achieved by several ana-
lytical methods, and, in particular, with the Molière model
for the atomic form factor, as estimated in Ref. �6�.

As a first test bench for the ECHARM program, we will
calculate the potential in silicon through Molière approxima-
tion and compare the results with those in the literature. Sec-
ond, the refinement given by including the electron density
as measured by x-ray experiments will be shown.

We determined the planar potential in the case of silicon
for the strongest orientations, i.e., �111� and �110�, as de-
picted in Fig. 1. One observes the typical two-well shape for
�111� orientation with a large �l� and a small �s� wells, whose
maximum depth is U0=25.68 eV �l�, and a single well for
�110� orientation �U0=23.39 eV�. The same quantities were
calculated for germanium, U0=41.82 eV and U0
=40.67 eV for �111� and �110� orientations, respectively.

By replacing the Molière approximation with the experi-
mentally achieved form factor by x-ray diffraction �26,27�,
we obtained a decrease in the potential barrier height by less
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than 10%, though the same shape of the potential held �Fig.
1�. For comparison, it turned out U0=22.55 eV and U0
=21.38 eV for �111��l� and �110� orientations, respectively.
A recent experiment �28� showed a better agreement of the
experimental results with such calculation of U0 instead of
the determinations based on Molière approximation.

We also determine the axial potential depths for �111�
�U0=117 eV� and �011� �U0=152 eV� directions in a sili-
con crystal, which are in good agreement with the estimates
in Ref. �3� �U0=106 eV and U0=140 eV, respectively� and
in fair agreement with Ref. �6� �U0=105 eV and U0
=114 eV, respectively�. This discrepancy owes to the con-
tribution of all axes to the potential as is in our case while
other methods accounts for only neighboring axes.

Lastly, we carried out the detailed comparison of our
method with the method based on the analytical expression
of the Moliere potential �see �6,16,19,20��. Usually, in this
method the potential is calculated in approximation of the
two neighboring crystallographic planes. We denote this ap-
proximation as �2p�x�. For our aims we calculate with the
help of this method potential of the �110� silicon plane taking
into account the contribution from four and six neighboring
planes ��4p�x� , �6p�x� approximations, correspondingly�.

The results of this comparison are presented in the Table
I. Note, the calculations were done with usage of the two
methods at the same conditions, in particular at the same rms

amplitude of thermal vibration and screening radius. The cal-
culations corresponds to temperature of single crystal equal
to 300 K. For comparison we present in the table results of
calculation for potential �X�x�, which was obtained in x-ray
measurements. We also present the calculation of the Moliére
potential for the case when amplitude of the thermal vibra-
tion is equal to zero �so called static potential�. We denote
this potentials as �2pS�x� and �MS�x� and they were obtained
similar as �2p�x� and �M�x� potentials.

We see that the potential �6p�x� is very close to potential
�M�x� which was calculated with the help of Eq. �11�. We
can conclude that the both methods give the same result, as
expected.

Besides, we see that �2p�x��6p�x���M�x� at �x��0.
The largest difference between potentials takes place at x
=1 and equal to �0.9 eV or 4% of the absolute value of the
potential �6p�x�.

B. Complex structures: Zeolites

Zeolites are largely studied materials because of their
widespread applications, spanning from heterogeneous ca-
talysis to gas purification �29�. A natural zeolite is an
alumino-silicate framework, whose structure contains cavi-
ties filled with water and exchangeable cations. The primary
buildings units of the structures of silicates are the TO4 tet-

FIG. 1. �Color online� Calculation of potential between �111� planes and �110� planes in Si with Moliere atomic form factor and the form
factor achieved by x-ray experiments. The potential calculated with the latter method is lower than for the former method, especially in
proximity of the atomic planes.

TABLE I. Different calculations of potential of the �110� silicon plane as a function of relative coordinate
�=2x /d, where d is the interplanar distance. The point x=0 corresponds to a minimum of the potential.

�=2x /d �2p��� �4p��� �6p��� �M��� �X��� �2pS��� �MS���

0.2 0.605 0.633 0.635 0.635 0.623 0.598 0.628

0.4 2.545 2.662 2.668 2.669 2.550 2.513 2.635

0.6 6.329 6.601 6.615 6.617 6.043 6.224 6.510

0.8 13.421 13.930 13.956 13.959 12.469 13.104 13.639

1.0 22.465 23.313 23.356 23.360 21.383 27.577 28.466
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rahedra, where T is mainly Si. The extraframework cations in
the structure �usually K, Na, Ca, less frequently Li, Mg, Sr,
Ba� often result in significant change of both physical and
chemical properties. Under some circumstances, neighboring
cavities merge to form long channels, which are periodically
repeated over the whole structure and may form a bundle of
parallel nanotubes. These crystals are ideal cases for particle
capture via axial channeling. Moreover, the knowledge of
precise data about the potential in zeolites allows to design
experiments about Coulomb explosions of charged mol-
ecules in crystals. Pioneering experiment in this sense has
been carried out in silicon crystal �30�, though the wide
channels offered by a zeolite should increase the efficiency
of the method. Among the immensely wide variety of zeo-
lites, we selected the species that possess broad channels,
good thermal stability and, ultimately, that exist as relatively
large crystals to be used for experiments.

The first sample we simulated is mordenite �29,31,32�,
whose potential, electric field, atomic density and density of
electrons along the �001� axis are illustrated in Fig. 2. The
crystal lattice is orthorhombic �a1=18.007 Å, a2
=20.269 Å, a3=7.465 Å� and Si, Al and O atoms form its
base. In order to simulate the structure of mordenite closer to
the existing crystals of this kind, we added Ca cations to the
framework in the locations at which such ions are bound to
the framework. The profile of the potential very much re-
sembles the structure of the zeolite and exhibits nearly a
field-free 14 eV deep channel, extending roughly 9 Å in
diameter. The depth of the potential well is comparable to
that of silicon.

The second sample we simulated is boggsite �33�, whose
potential, electric field, atomic density and density of elec-
trons along the �100� axis are illustrated in Fig. 3: the crystal
lattice is orthorhombic �a1=20.041 Å, a2=23.814 Å, a3

FIG. 2. �Color online� Contour plot of physical quantities of interest along the �001� axis of Mordenite at T=300 K, as a function of
coordinate x and y. �a� Potential: a wide channel with uniform potential is visible on the center of the figure. The ion breaking the symmetry
of the potential are Ca++ cations bound to the well of the channel. �b� Electric field �x component�. �c� Electron density. �d� Atomic density:
this figure gives a picture of the extent of the atomic oscillations in the crystal.
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=12.869 Å� and the base is composed by Si, Al, Ca, and O
atoms. Boggsite shows impressive thermal stability �34�,
which gives the possibility to heat the sample and remove
the water molecules absorbed in its channels without signifi-
cant structure deformation. Boggsite exhibits two interesting
large channels for axial channeling, a channel with a 12-atom
perimeter along �100� direction, a channel with a 10-atom
perimeter along �010� direction. Each direction highlights a
deep well �14 eV for �010� and 14.5 eV for �100��, i.e., two
interesting situations for axial channeling of positively
charged particles.

Another important feature of zeolites crystals is the neg-
ligible density of electrons inside the channels, as shown in
Fig. 3 for the particular case of boggsite. Indeed, scattering
processes between channeled particles and atomic electrons
lead to dechanneling, which is thereby considerably weak-
ened for a zeolite.

C. Cubic structure: silicon and silicon carbide

The interplanar potentials of silicon �001�, �011�, and
�111� planes were calculated and studied to explain the be-
havior of channeled particles in oriented crystals �3,6,20� and
to furnish important information about the depth of the po-

tential well and, in turn, the critical angle for channeling and
the other fundamental physical quantities.

Apart from such major planes in silicon, rather modest
information is available for channeling in minor orientations.
Indeed, a recent experiment �7� showed the transition from
the stable confinement of axially channeled particles toward
planar channeling of minor orientations, this effect being the
limiting factor for particle steering via axial channeling.
Thus, the knowledge of the potential of such minor orienta-
tions for planar channeling is demanded.

Another effect involving minor orientations is for the case
of multivolume reflection in a single crystal �35�, i.e., an
effect in which the contributions of all the orientations shar-
ing a common axis add up to deflect the particles.

As an example, we show several planes with high-order
indexes in a silicon crystal �see Table II� and calculate their
potential energy.

A crystalline material with cubic symmetry that deserves
special attention is SiC. Its elevated melting point together
with the high perfection of available crystals of this kind
suggests the application under high particle fluxes. To prove
the versatility of the algorithm of calculation we determined
the potential and electric field in axial mode along the �112�
axis, as illustrated in Fig. 4 respectively.

TABLE II. Potential well depth �U0� and interplanar distance �D� for several high-order planes in silicon
crystal: all the values are evaluated using the experimentally achieved form factor.

Plane �201� �211� �221� �301� �311��l� �321� �331��l� �332�

D �Å� 0.61 1.11 0.45 0.85 1.23 0.73 1.00 0.58

U0 �eV� 2.89 8.64 1.48 5.54 9.35 4.09 6.02 2.62

FIG. 3. �Color online� Contour plot of physical quantities of interest along the �100� axis of Boggsite at T=300 K, as a function of
coordinate y and z. �a� Potential. �b� Electric field �x component�. �c� Electron density. �d� Atomic density.
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VI. DISCUSSION AND CONCLUSIONS

We have developed a method for calculation of the poten-
tial and related physical quantities for investigation of inter-
action of particles with oriented crystals. The method relies
on a Fourier expansion of the potential in a periodic struc-
ture. The advantages of such an approach are that the calcu-
lation is made over the whole crystal atoms and x-ray data
measurements can be imported to calculate atomic form fac-
tor. The algorithm exhibits maximal flexibility for the cubic
symmetry and allows to calculate the physical quantities of
interest for complex structure. In the calculation, perturbing
effects of external electromagnetic fields are not considered
as well as the delocalization of electrons is neglected.

The algorithm has been developed specifically for the
most interesting cases for planar and axial channeling, i.e.,
orthorhombic and tetragonal crystals along major directions,
and any direction for the cubic lattice. We provided examples
of calculation in complex structures, such as zeolites, and
show the corrections due to the usage of atomic form factors
achieved by measurements with x-ray experiments and com-
pare to previously existing models.

We finally wrote the ECHARM program, i.e., a free soft-
ware for calculation of the physical quantities described in

this paper. Calculation time strictly depends on the structure,
as an example the determination of the potential of Boggsite
�Fig. 3� took approximately 2 h with a standard personal
computer. For this reason we limited the number of atomic
species to 50 with 1000 atoms per species.

The ECHARM program is intended to aid the design of new
crystals for experiments. As an example, the characteristics
of new materials for channeling experiments can be simu-
lated before the experiments even in the case of complex
structure such as zeolite. At low energy, the ECHARM pro-
gram could be implemented as a routine in the software for
analysis of Rutherford backscattering spectroscopy, espe-
cially for operation in channeling mode, for better descrip-
tion of experimental energy spectra of backscattered par-
ticles.

We believe that the program can be of widespread appli-
cation in several areas.
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